25 research outputs found

    Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV

    Get PDF
    In the present study, we examined the relationships among cognitive function, magnetic resonance spectroscopy (MRS) brain metabolite indices measured in the basal ganglia, and quantitative magnetic resonance imaging (MRI) of the caudate nucleus and the putamen in the earliest stages of HIV-related cognitive involvement. Participants included 22 HIV-positive individuals and 20 HIV-negative individuals. HIV-positive individuals performed significantly more poorly than the HIV-negative individuals on several cognitive measures. In addition, the choline/creatine ratio was significantly higher and the N-acetyl aspartate/choline ratio was significantly lower among HIV patients. The caudate and putamen sizes were smaller among HIV-positive patients compared with controls; however, the differences did not reach statistical significance. Correlation analyses revealed associations between cognitive function and select MRS indices. In addition, caudate size was significantly correlated with performances on higher-order thinking tests whereas putamen size was significantly correlated with performances on motor tests. The results suggest that MRS differences are more pronounced than area size differences between seropositive and seronegative individuals in mild stages of HIV-related cognitive impairment. However, basal ganglia size remains an important contributor to cognitive status in this population. Longitudinal studies are needed to determine the evolution of these imaging correlates of HIV-cognitive impairment in HIV

    Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy

    Get PDF
    Emerging evidence suggests that CNS injury and neurocognitive impairment persist in the setting of chronic HIV infection and combination antiretroviral therapy (CART). Yet whether neurological injury can progress in this setting remains uncertain

    Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals

    Get PDF
    Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1β, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment tool. In particular, the findings identify relationships between the immune response—particularly an interferon-inducible chemokine, IP-10—and cerebral metabolites and suggest that antiretroviral therapy and memantine modify the impact of the immune response on neurons
    corecore